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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), causing the 2019 novel coronavirus disease (COVID-19), 
was introduced by WHO (World Health Organization) as “pandemic” in March 2020. According to WHO, thus far (23 
November 2020) 58,425,681 infected cases including 1,385,218 deaths have been reported worldwide. In order to reduce 
transmission and spread of this lethal virus, attempts are globally being made to develop an appropriate vaccine. Intending 
to neutralize pathogens at their initial entrance site, protective mucosal immunity is inevitably required. In SARS-CoV2 
infection and transmission, respiratory mucosa plays a key role; hence, apparently mucosal vaccination could be a superior 
approach to elicit mucosal and systemic immune responses simultaneously. In this review, the advantages of mucosal vac-
cination to control COVID-19 infection, limitations, and outcomes of mucosal vaccines have been highlighted. Consider-
ing the gut microbiota dysregulation in COVID-19, we further provide evidences on utilization of recombinant probiotics, 
particularly lactic acid bacteria (LAB) as vaccine carrier. Their intrinsic immunomodulatory features, natural adjuvanticity, 
and feasible expression of relevant antigen in the mucosal surface make them more appealing as live cell factory. Among all 
available platforms, bioengineered probiotics are considered as the most affordable, most practical, and safest vaccination 
approach to halt this emerging virus.
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Introduction

Live microorganisms which provide health advantages par-
ticularly on the gastrointestinal tract are called probiotics 
[1]. WHO has described probiotics as a group of bacteria 
which provides health advantages on the host following suf-
ficient administration [2]. They are potent to stimulate and 
modulate systemic and mucosal immune functions [3, 4]. 
Recent advances in synthetic biology enabled us to engineer 
probiotics with particular therapeutic functions for several 
disorders that conventional medicines have failed to cure, 
including cancer, infections, or other metabolic diseases [5, 
6]. Following the administration of engineered probiotics as 
vaccines, protective immune response at various mucosal 
membranes such as urogenital, intestinal, and aero digestive 

has been demonstrated [7]. There are some evidences indi-
cating the potency of probiotic supplements on alleviation 
of the severity and prolongation of viral respiratory tract 
infection [8–10]. Moreover, proper preventive antiviral 
responses following probiotics application as prophylactic 
agents have been reported elsewhere [11]. Among probiotic 
bacteria, E. coli, Bacteroides, and lactic acid bacteria (LAB) 
are the most desirable and preferred chassis for engineered 
live therapeutics [12].

As the emerging severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is spreading too fast world-
wide, developing an effective vaccine is urgently required. 
Recently, among all available platforms, bioengineered pro-
biotics expressing desired recombinant proteins received 
more attention due to their feasibility, cost effectiveness, and 
numerous inherent characteristics. Furthermore, the immu-
nological coordination between the gut and lungs as two 
vital organs in COVID-19 infection has been demonstrated 
[13]. Due to the vital role of the gut microbiome in modula-
tion of immune responses of COVID-19-infected individuals 
reported by Ahlawat and Sharma [13] and Tiwari et al. [11], 
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we speculated that probiotics as vaccine carrier might be a 
promising approach. All abovementioned findings together 
prompt us in this review to provide existing advances and 
potential approaches for vaccine development using probiot-
ics as vaccine carrier to elicit mucosal and systemic immu-
nity while highlighting the superiority of their potential and 
inherent characteristics which could be utilized in the control 
and prevention of SARS-CoV2.

A Glance at Coronavirus Disease 2019 
(COVID‑19)

Most prevalent coronaviruses cause mild upper respiratory 
infections and common colds, but some pandemic out-
breaks have emerged in the recent century. They include 
(1) the severe acute respiratory syndrome (SARS) coro-
navirus in 2002–2003, (2) after a decade the Middle East 
respiratory syndrome (MERS) coronavirus, (3) and cur-
rently the COVID-19 SARS-CoV-2 [14, 15]. According to 
SARS-CoV-2 genome studies, there is more correlation to 
SARS (80%) than MERS CoV (54%) [14]. Briefly, SARS-
CoV-2 from the beta-CoV genera in the family Coronaviri-
dae is an enveloped single-stranded positive RNA genome 
(29.88 kb) encoding four main structural proteins such as 
nucleocapsid (N) associated with the RNA, the spike (S) 
glycoprotein, the membrane (M) glycoprotein, the enve-
lope (E) protein, nonstructural proteins (nsp1–16), and 5–8 
accessory proteins [16]. Among all, S protein attracted the 
most attention in vaccine development since its receptor- 
binding domain (RBD) plays the main role in attach-
ment, membrane fusion (via S1 and S2, respectively), and 
entrance of the virus to angiotensin-converting enzyme 
2 (ACE2)  receptor+ host cells [14, 16, 17]. Furthermore, 
S protein is capable of inducing neutralizing antibodies 
in patients. As blocking SARS-CoV2 RBD can prevent 
SARS-CoV-2 and SARS-CoV infections [18], S protein is 
considered as a promising candidate not only for prophy-
lactic but also for therapeutic purposes [16]. SARS-CoV-2 
could transmit via respiratory droplet, contact, and possi-
bly through fecal-oral routes. It appears that viral replica-
tion initiates in the mucosal surface of the nasopharynx 
and upper respiratory tract and continues to proliferate in 
the lower respiratory tract and gastrointestinal mucosa, 
thereby causing mild viremia [19]. Infections could be 
controlled at this stage; some infected people might remain 
asymptomatic, and some may suffer from non-respiratory 
symptoms such as acute liver and heart injury, kidney fail-
ure, and diarrhea [20–23]. Data provided by Zou et al. 
[24] demonstrated the susceptibility of numerous organs 
such as nasal mucosa, bronchus, lung, heart, esophagus, 
kidney, stomach, bladder, and ileum to SARS-CoV-2 due 
to the prevalent expression of ACE2 [24]. Incidence of 

acute respiratory distress syndrome (ARDS) is associated 
with cytokines [25]. In this regard, an increasing body of 
research has shown the role of numerous genes involved in 
the outcome of ARDS such as ACE2, interleukin 10 (IL-
10), tumor necrosis factor (TNF), and vascular endothelial 
growth factor (VEGF) [25]. In addition, elevated expres-
sion levels of IL-6 and IL-8 play a crucial role in adverse 
outcomes of ARDS [26]. Antibody-dependent enhance-
ment (ADE) has been widely reported in viral infec-
tions. Briefly, it results in increased infection, following 
the interaction of antibody-bound virions to fragment 
the crystallizable region (Fc receptors) or other recep-
tors [27]. Acquired knowledge from SARS demonstrated 
that antibodies against non-RBD regions of S protein can 
trigger the ADE effect, leading to further virally infected 
cells along with destructive immune responses [28], 
which has been recently proposed in COVID-19 as well 
[29]. Considering the findings from previous coronavirus 
infection, immune response can be a double-edged sword 
for the host to induce whether the favorable or adverse 
response determines disease outcome [30]. Accordingly, 
anti-inflammatory approaches such as various medicines, 
intravenous transplantation of ACE2-mesenchymal stem 
cells (MSCs), and intravenous immunoglobulin (IVIG) to 
block FcR are being applied as therapeutic strategies for 
severe COVID-19 [29, 31]. In COVID-19, we have basi-
cally faced two immune phases; during the first protec-
tive phase, immune responses should be boosted, while 
under the second inflammatory phase immune responses 
should be suppressed [32]. Innate immune response can 
induce whether the favorable or adverse response deter-
mines disease outcome [30]. Mainly, interferon (IFN) type 
I response at the initiation site of viral infections is the 
core player in proper innate immune response. Follow-
ing the recognition of viral genomic RNA by pathogen-
associated molecular patterns (PAMPs) such as Toll-like 
receptors (TLRs) 3 and 7 or RIG-I/MDA5, downstream 
signaling pathways such as NF-κB and IRF3 were acti-
vated. Subsequently, the expressions of pro-inflammatory 
cytokines and type I IFN are induced. If adequate type 
I IFN response was induced, replication and distribu-
tion at very early stages were inhibited, but taking into 
account that viruses are also able to suppress anti-viral 
IFN responses and replicate unlimitedly [30]. Meanwhile 
in anti-viral adaptive immunity, Th1 response is of impor-
tance [30]. This is the same for SARS-CoV-2, and severe 
outcome is the consequence of poor antibody response 
[33]. Generally, adaptive response including cytotoxic T 
cells to eliminate viral infected cells and humoral immune 
response to restrict infection at the later phase and pro-
hibit reinfection is needed [30]. Although both innate and 
adaptive immune responses are activated in SARS-CoV-2 
infection, it is worth noting that adverse local and systemic 
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tissue damage might occur due to severe inflammatory 
innate or impaired adaptive immune responses. Lympho-
penia as reduced numbers of  CD4+,  CD8+ T cells, B cells, 
and natural killer (NK) cells and simultaneously increased 
neutrophil has been reported in severe COVID-19 [18, 20]. 
The enhanced neutrophil-to-lymphocyte ratio and elevated 
levels of IL-6 usually are indicators of poor prognosis, 
severity of disease with pneumonia, and ARDS [14, 18]. 
Moreover, the so-called cytokine storm as increased serum 
levels of pro-inflammatory cytokines such as IL-6, IL-7, 
IL-1β, IL-2, IL-8, IL-17, IL-10, G-CSF, GM-CSF, IP10, 
MCP1, MIP1α (CCL3), and TNFα is reported in severe 
cases [20, 30, 34]. Shock and tissue injury in the heart, 
liver, and kidney and respiratory failure might occur as 
a consequence of these elevated levels of cytokines [14]. 
Worth noting is that the cytokine storm may cause more 
destruction than the coronavirus itself [30]. Following the 
cytokine storm, viral sepsis and inflammation, destruc-
tion of lung function, pneumonitis, acute respiratory dis-
tress syndrome (ARDS), respiratory failure, shock, organ 
failure, and potentially death might occur [30]. Consid-
ering the aspects mentioned above, SARS-CoV2 patho-
genesis might result in both lymphopenia and cytokine 
storm. Because of repetition of the epidemic and currently 
pandemic emergence of coronavirus every decade in the 
twenty-first century, vaccine development seems to be a 

better strategy to control coronavirus outbreaks than thera-
peutics [35].

COVID‑19 Vaccine Requirements

Currently, the most vital challenge is to control and prevent 
the spread of SARS-CoV2 infection. In general, safety, effi-
cacy, and durable immunity should be considered in vaccine 
development, but in pandemics such as the current situation, 
speed, feasibility, and time are of the essence [14]. It is worth 
noting that routes of entry and the target organs of virus should 
be considered in vaccine development. Infectious SARS-
CoV-2 particles have been isolated from respiratory, fecal, 
and urine samples [14]. Whether SARS-CoV-2 reaches the 
lungs via viremia or through the upper respiratory tract, dif-
ferent approaches should be preferred. For instance, parenteral 
(IM) vaccines inducing neutralizing antibodies in serum to 
block viremia or intranasal vaccines, inducing mucosal immu-
nity, and reducing nasal shedding are of interest for viremia 
or upper respiratory tract infection, respectively [14]. In this 
regard, wide-range platforms of COVID-19 candidate vac-
cines such as nucleic acid (DNA/RNA plasmids), virus-like 
particle, peptide, viral vector (replicating and non-replicating), 
recombinant subunit protein, live attenuated virus, and inacti-
vated virus are under various stages of clinical trials (Table 1)  
[14, 36]. Among all candidate vaccines, balancing the 

Table 1  SARS-CoV-2 vaccine candidates from various platforms in clinical trials

Type  Name  Target Company/research group/partners Clinical trial

DNA INO-4800 Spike Inovio NCT04336410
bacTRLSpike Spike Symvivo Corporation NCT04334980 

RNA mRNA- Spike Moderna NCT04283461
1273
BNT162 3CLpro, NSP5, BioNTech/Pfizer NCT04380701 

Mpro,
Protein NVXCoV2373 Spike Novavax; NCT043 988 

SCB-2019 Spike Clover Biopharmaceuticals NCT04405908 
COVAX-19 Spike Vaxine Pty Ltd NCT04453852 

Viral vector AZD1222 Spike University of Oxford (Jenner Institute)/Astra Zeneca NCT04444674 
(ChAdOx1
nCoV-19
Ad5-nCoV Spike CanSino Biologics NCT04313127 
Ad26  Spike Johnson & Johnson–Janssen NCT04436276 
SARSCoV-
2
V591 Spike Institut Pasteur/Merck NCT04498247 

Inactivated 
Virus

CoronaVac(PiCoVacc) Spike Sinovac Biotech/ NCT04352608 
COVID-19 vaccine Spike Beijing Institute of Biological Products/Wuhan Institute 

of Biological Products
ChiCTR2000031809
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humoral (neutralizing antibody) and T cell responses should 
be taken into account [37]. Mostly, their main goal is induc-
tion of anti-spike (S) protein–neutralizing antibodies to inhibit 
virus attachment, cell entry, and subsequent infectivity [36]. 
Although some approaches have not been approved for any 
other clinical applications, they are being evaluated in the 
COVID-19 pandemic for acceleration of appropriate vaccine 
development [36]. Among them, mRNA vaccine was the first 
to be evaluated in human clinical trial before others [14]. The 
detailed mechanism actions of immunity to COVID-19 in 
humans are unknown, but the importance of mucosal immu-
nity at least to reduce nasal shedding is obvious. It should be 
noted that conventional vaccines are relevantly capable of pro-
hibiting COVID-19 disease, but inadequate to prevent its trans-
mission due to the lack of nasal shedding blockage. Reduction 
of disease severity and blocking viral shedding and transmis-
sion are required to control the outbreak [38]. In the current 
COVID-19 pandemic, a major challenge needed to be over-
come is elimination of virus shedding which could be achieved 
through mucosal immunity. Due to both respiratory and intes-
tinal infection and simultaneously fecal and nasal shedding, an 
optimal prophylactic SARS-CoV2 vaccine should be capable 
of preventing both enteric and respiratory infections. Also 
fecal and nasal shedding should be inhibited. Apparently, in 
the prevention of viral respiratory infection, mucosal immunity 
is superior [29]. The intestinal immune system is more pow-
erful than respiratory immune systems [29]. Hence, it seems 
that mucosal immunity induced through the intestinal immune 
system might be a promising approach in current SARS-CoV2 
vaccination strategies.

Mucosal Immunization vs Conventional 
Parenteral Immunization

In vaccine development, induction of local immune response 
which neutralizes pathogens at the first entry site of infection 
is worthwhile [39]. For those infectious agents acquiring via 
mucosal routes, mucosal immunity is required [40]. Thus, 
mucosal vaccines eliciting sIgA antibodies at mucosal sur-
faces and simultaneously systemic immune responses are 
highly desirable [41, 42]. Since the main portal for patho-
gen entry is mucosal sites [43], mucosal immunization is 
superior to conventional parenteral immunization. Mucosal 
immunization is capable of eliciting not only both local and 
distant mucosal sites [43] but also systemic immunity [44, 
45], inhibiting further entry of former pathogens [46, 47]. 
Mucus, peristalsis, gastric acid, bile, and antimicrobial pep-
tides are all components of innate mucosal immune strate-
gies whereas adaptive mucosal immune responses include 
antigen-specific antibodies and cell-mediated responses 
[43]. Both of them could induce more robustness by direct 
immunization at the mucosal surfaces rather than through 

systemic routes [43]. Current licensed vaccines are mostly 
administered through conventional routes such as subcutane-
ous or intramuscular. Despite their efficiency in providing 
systemic immune responses, mucosal immune responses 
are not simply acquirable [48]. The main shortcoming of 
the most commercially available vaccines is lack of suitable 
levels of mucosal IgA response and mucosal immunity [40, 
49]. Hence, mucosal vaccines are superior to other vaccina-
tion strategies [40], which provides the active combat zone 
of defense for pathogens with mucosal initial site of entry 
(oral and nasal routes) [45, 50]. Since the composition of 
innate cells with particular pattern recognition receptors 
(PRRs) is diverse in mucosal and systemic tissues, adminis-
tration of the same antigen/adjuvant or the same vaccine in 
various routes would lead to utterly different efficiency [51, 
52]. In this regard, Pederson et al. compared the intranasal 
and intramuscular inoculation of a candidate influenza vac-
cine. Their results indicated the superiority protection of 
nasal approach at the virus’ entry site with robust mucosal 
antibodies, neutralizing serum IgG and memory T cells [53]. 
Mostly, oral immunization/vaccination is considered as a 
wise approach to elicit desired immune responses such as 
mucosal secretory IgA (sIgA) antibody response, neutral-
izing serum IgG and memory T cells [54]. Furthermore, 
compared with systemic vaccines, mucosal vaccines are 
more convenient [45]. Their advantages are simplicity of 
needle-free administration, feasibility of mass vaccination 
without demanding expert medical staff, cost effectiveness, 
and lower side effects [55, 56]. Orally available mucosal vac-
cine approaches are quite various and include micro or nano-
particles, immune-stimulating complexes, liposomes, or live 
viral or bacterial vectors producing antigens in vivo. In this 
regard, the great example of potent oral vaccine is against 
poliomyelitis [57, 58]. Other commercially available oral 
vaccines including Rotarix®, GlaxoSmithKline, RotaTeq®, 
and Merck against RV infection stimulate a similar immune 
response to natural immunity induced by typical virus [59]. 
Briefly, in optimal oral mucosal vaccine, activation of B 
cells in lymphoid tissues should occur following the attach-
ment of antigens to intestinal mucosa, microfold (M) cells, 
and transmission the mucosa [60] (Fig. 1).

Mucosal Immune System

The mucosal immune system as a first barrier against patho-
gens consists of initiation and effector sites such as secondary 
lymphoid tissue known as the mucosal-associated lymphoid 
tissues (MALT) [61] and specific T and B cells which spread 
from preliminary sites via bloodstream to other mucosal effec-
tor sites [45]. Immune responses have been induced locally 
not only at the delivery site of antigens but also at the further 
distant mucosal surface [40] via lymph circulations [45, 62]. 
MALT consisted of epithelial cells within some specialized 
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cells (M cells) to uptake antigens from the lumen/environment 
and deliver to the second layer including macrophages and 
dendritic cells (DCs) to process the antigen and subsequently 
a region full of follicular dendritic cells (FoDCs), B and T 
cells [50]. The hallmark of M cells such as no secretion of 
mucus and glycocalyx, while enabling to perform endocyto-
sis activity, makes them suitable vehicle transferring antigens 
from luminal to inductive MALT sites [63]. Thus, the main 
entrance site of infectious agents at mucosal sites is their trans-
portation through M cells [40, 43] (Fig. 1). At the same time, 
epithelial cells secrete pro-inflammatory cytokines to further 
provoke the mentioned immune cells [64]. Thus, delivering 
the antigen and simultaneously stimulating them at this region 
result in boosting the immune responses [50]. This consider-
ably advanced mucosal immune system makes mucosal sites 
as an optimal vaccination route [65]. Briefly, following the 
expression of mucosal IgA from plasma cells at the mucosal 
surfaces, IgA binds to the immunoglobulin receptor (pIgR) 
on mucosal epithelial cells and subsequently transcytoses to 
the surface and secretes into the mucus [66]. Furthermore, 
mucosal T cells and epithelial cells are also involved in IgA 
producing B cell maturation through cytokines [67]. On the 
other hand, systemic IgG response is also induced via migra-
tion of IgG-producing B cells and activates DCs from mucosa 
to the bone marrow, lymph nodes, and spleen [68]. Cytotoxic 
T lymphocyte (CTL) response is also induced at mucosal 
sites for mucosal clearance of microbes [50]. In the current 
COVID-19 outbreak, adaptive responses include CTLs to 
eliminate viral infected cells and humoral immune response 
to restrict infection at the later phase and prohibit reinfection 

is needed [30]. All of these immune responses lead to reduc-
tion of both enteric and respiratory infections as well as viral 
fecal and nasal shedding of COVID-19 patients [38]. These 
requirements seem to be achieved through mucosal immunity. 
Briefly, M cells initially detect antigens, delivered through 
transcytosis [69] to antigen-presenting cells (APCs), then 
naïve T and B cells in mucosal inductive sites are activated 
and subsequently distributed into peripheral blood [45]. This 
is shown in Fig. 1.

Critical Dilemma of Mucosal Vaccines

Despite all these advantages and the superiority of mucosal 
immunization, there are some critical dilemmas for oral 
vaccination. Mucosal/epithelial layers of the intestinal, as 
barriers, absorb and reduce the amounts of antigen. This 
reduction inhibits the effective delivery and disrupts anti-
gen presentation leading to immune tolerance. Therefore, 
compared with parenteral immunizations, here more ele-
vated antigens are required [70–73]. Not only does elicita-
tion of mucosal immune response require the transmission 
of antigens through the mucosal layer [74], but also their 
long-lasting release to APCs is highly needed [70]. Another 
obstacle in mucosal vaccination is the reverse correlation 
between immunogenicity and solubility of antigens [45]. 
Moreover, presence of proteases and low pH in gastrointes-
tinal (GI) tract [57, 75], as well as immune tolerance, are 
obstacles for protein vaccines that need to be conquered in 
oral vaccination [57].

Fig. 1  Probiotic-based vaccine. 
Following the oral administra-
tion and transmission through 
Mcells, desired antigens are 
presented by dendritic cells 
(DC). Subsequently, specific 
adaptive responses are activated. 
This figure has been created in 
BioRe nder. com

https://BioRender.com
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Overcoming Obstacles of Oral Vaccination

Attachments of the desired antigen to intestinal mucosa and 
M cells and transmission of the mucosa ending up to B cells 
in lymphoid tissues should be taken place by optimal oral 
mucosal vaccine [60]. As mentioned above, immune toler-
ance is regarded as an obstacle that needed to be overcome 
in oral vaccine development [57]. Regulatory T cells (Tregs) 
play the main role in immune tolerance [76] and are con-
sidered as crucial players in both lungs and GI tract. They 
prevent irrelevant immune responses to environmental or 
self-antigens and play a role as main tools to provide toler-
ance to harmless antigens. Thus, there is a great possibility 
of T and B cell tolerance induction via mucosal vaccination 
[77]. Pathogenic features of attenuated bacterial and viral 
pathogens could assist their entry into the body and overcome 
to tolerance [78]. In addition, improvement of serum and 
mucosal antibody responses subsequent to the involvement 
of PRRs agonists, particularly TLRs as vaccine adjuvants, 
has been reported in clinic [79, 80]. Innate immune responses 
such as secretion of inflammatory cytokines and chemokines 
are results from PRR activation. Among all, the role of TLR2 
in improvement of antigen uptake and DC migration has been 
demonstrated by Chabot et al. [81]. Mucosal vaccine efficacy 
could be improved through TLR-based adjuvants [50]. Thus, 
it is highly recommended to use the capability of PRRs to 
induce further immune responses and cytokine production 
[82]. Despite the potential of attenuated bacterial and viral 
pathogens to provide PAMPs which is recognized by PRRs, 
drawbacks of live attenuated bacterial vectors are patho-
genic reversal and pre-existing immunity [83]. Hopefully, 
synthetic biology provided us the opportunity to genetically 
engineered microorganisms with any genes of interest act-
ing as living therapeutics [84]. Furthermore, this could be 
extended to commensal microbes and probiotics to enhance 
their therapeutic effects [5, 85]. Therefore, engineered probi-
otics are considered as the best alternative for mucosal vac-
cines carrier [78] and LAB have been long investigated as 
live mucosal vaccine vectors [86, 87].

Probiotics, the Best Alternative as Mucosal 
Vaccine Vectors

It should be noted that in coronavirus studies, enterocytes 
are considered as a conserved cell reservoir [88]. Consider-
ing altered and dysregulated gut microbiota following the 
SARS-CoV-2 infection [89–92] and their gastrointestinal 
tendency via ACE2 receptors, the gastrointestinal tract has 
been proposed as a potential target in COVID-19 control and 
transmission [93]. Subsequent to the SARS-CoV-2 invasion 
into the intestinal tract, gastrointestinal disruption, inflamma-
tory responses, and altered microbiota have occurred [94]. 

Inflammation leads to disruption of intestinal barrier and 
enhanced permeability; therefore, secondary systemic infec-
tion could occur [95]. Meanwhile, elevated concentrations 
of TNFα, IL-1b, and IL-6 in blood stream make systemic 
inflammation worse [96]. It has been shown that respira-
tory tract infection and intestinal interruption are frequently 
simultaneous. Moreover, dysregulation of gut microbiota 
worsens the lung injury [94]. Recently, the microbiota-
lung axis as a mutual cross talk between gut microbiota and 
lungs has been reported by Zhang et al. [97]. Microbiota 
dysregulation influences the pulmonary immunity while 
lung inflammation disrupts the intestinal microbiota [97]. 
Considering the gut-lung axis (GLA) as a communicational 
pathway between gut and lung [98], intestinal bacteria or 
their metabolites could get into the lung and affect the pul-
monary immune response via mesenteric lymphatic system 
and systemic circulation [99, 100]. Bradley et al. reported 
that enteritis and ventilator-associated pneumonia could be 
declined by modulating the gut microbiota [101]. Therefore, 
in order to provide the equilibrium of the gut microflora 
while alleviating gastrointestinal symptoms to prevent sec-
ondary bacterial infection, probiotics administration could 
be a beneficial approach to patients with severe COVID-19 
[102]. Furthermore, the mucosal immune system and micro-
biome affect each other [103–106]. The detailed molecular 
events behind this association remained uninvestigated [45]. 
Nevertheless, it led to keep tolerance against harmless anti-
gens, while providing appropriate immune response against 
infectious agents [107] and making homeostasis in mucosal 
tissue [45, 108]. Dysbiosis in content and diversity of micro-
biome may result in disease development [45]. In this regard, 
probiotics are valuable microorganisms regulating local and 
systemic immune responses to infections and vaccines [108]. 
Additionally the health and nutrition of the GI system and 
intestinal microbiome directly affect the immunogenicity and 
efficacy of vaccines [109–111].

The capability of probiotics in modification and recon-
stitution of microbiome has been made as appropriate ther-
apeutic and prophylactic tools in gastrointestinal, inflam-
matory, and respiratory disorders [45]. They are known as 
generally recognized as safe (GRAS) and are not only harm-
less but also quite favorable. LAB, the most commonly used 
probiotics, have been largely applied in food industries due 
to their capability of increasing the acidity and antibacterial 
bacteriocin for food preservation and bioprocessing [112]. 
Their acid, bile, and salt tolerance simply enabled them to 
remain in an unfavorable environment of the gastrointes-
tinal tract [113]. Gut-associated lymphoid tissues (GALT) 
and other cells present in the intestinal mucosa could com-
municate and cooperate with probiotics via PRRs and 
microbe-associated molecular patterns (MAMPs) expressed 
on microorganisms and host cells, respectively [114–118]. 
Moreover, gut mucous membrane health condition and 
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distribution of lymphoid cells in GALT are maintained 
by LAB. The mechanism underlying these phenomena is 
unclear, but possibly they or their own secondary products 
are captured by M-cells and presented to the immune system 
[119]. Innate immune response triggered via the LAB cell 
wall peptidoglycan and lipoteichoic acid, through TLR2, 
nucleotide-binding oligomerization domain (NOD)–like 
receptor (NLR) family, and C-type lectin receptors [120, 
121], and interferon responses are activated through TLR3, 
TLR6, and TLR9 [122, 123]. Moreover, cytokines might 
be elicited by LAB via presentation of antigen to T cells or 
subsequent interaction with immune cells directly through 
the receptors of LAB peptidoglycan existing on lymphocytes 
and macrophages [124, 125]. Their peptidoglycan induced 
monocytes to express IL-1, IL-6, and TNF-α leading to stim-
ulation of T or B-cell proliferation and B-cell differentiation, 
respectively [125–127]. Further than their immunomodula-
tory features, cytokine induction, or the progression of regu-
latory T-cell development or their beneficial natural adjuvan-
ticity [73, 128–130], they are internalized in the gut leading 
to various immune responses [73]. In addition, they could be 
engineered to simultaneously express and deliver the desired 
protein to mucosal tissues for prophylactic or therapeutic 
purposes (Fig. 1). These are called live cell factories which, 
further than their expected effect through the expression of 
certain gene, influence the regular health as probiotics [131]. 
Hence, their intrinsic characteristics for general health such 
as modulation of intestinal microbiome composition, host 
immune system, improvement of intestinal barrier function 
[132–134], immune stimulation via PRRs, binding to DCs, 
tolerance to acid and bile, and association with the mucosal 
epithelium via their mucus-binding protein [135], together 
with their experience in the food industry, facilitate their 
application for vaccine development [73, 136]. Iwak et al. 
for the first time used LAB as a vaccine vector in 1990 by 
eliciting specific IgG and IgA antibodies and introduced 
them as alternative to conventional bacterial vaccine vectors 
[137]. All advantages of LAB have been made as promis-
ing candidates for mucosal vaccine delivery vectors. These 
advantages are related to their safety, simplicity, noninva-
siveness of oral or intranasal administration, feasibility of 
genetic modifications, cost-effectiveness, ability to elicit 
high levels of mucosal and systemic antibodies [87] and 
circumvent the cold chain, low probability of gene transfer 
due to their particular genetic replication system, and narrow 
host-range plasmids [112, 138, 139]. In some vaccine stud-
ies, the enhancement of B cell and antibody responses has 
been reported prior to or simultaneous with administration 
of probiotic with vaccination [135]. In these approaches, 
probiotic bacteria are appropriate candidates as adjuvants 
because of their surface structures [140]. Indeed, immune 
cells recognize their surface lipoteichoic acid (LTA), pepti-
doglycan (PG), and muramyl dipeptide via TLR 2/6 leading 

to the production of mucosal antibodies particularly IgA 
[141]. Thus, it would be highly desirable to use this intrin-
sic feature of their immunomodulatory in combination with 
adjuvanticity for the development of engineered probiot-
ics as live oral/mucosal vaccine vectors [78, 87, 135, 142, 
143]. Based on these properties of probiotics together with 
results from recent studies on the advantages of probiotics 
administration in patients with severe COVID-19 [102], we 
believe probiotics could be considered as a promising oral 
vaccine vector.

Choosing the Relevant Strains

According to phylogenetic classification, LAB include six 
families: Aerococcaceae, Carnobacteriaceae, Enterococ-
caceae, Lactobacillaceae, Leuconostocaceae, and Strep-
tococcaceae (phylum Firmicutes) with an exception of 
Bifidobacterium (phylum Actinobacteria). Although Bifi-
dobacterium are phylogenetically irrelevant, they are con-
sidered as LAB [112]. Some microorganisms from various 
genera such as Leuconostoc, Lactococcus, Lactobacillus, 
Pediococcus, and Streptococcus are more widespread [11]. 
The challenge needed to be overcome is selecting the proper 
vector among all LAB [144]. Choosing the relevant strains 
as vaccine carrier is a critical step. For instance, Lactoba-
cillus casei, Lactobacillus delbrueckii ssp. bulgaricus, and 
Lactobacillus acidophilus influence the systemic humoral 
response [73], whereas elevated expression levels of IL-10 
and IL-4 leading to type 2 T helper cell (Th2) activation fol-
lowing the administration of Lact. delbrueckii ssp. Bulgaricus 
or Lact. Casei have been reported. IL-2 and IL-12 directing 
Th1 subsequent to the Lact. Acidophilus administration have 
been shown [73, 145]. De Moreno de LeBlanc et al. reported 
that not only mucosal intestinal but also systemic humoral/
cellular immune responses were elicited following the oral 
vaccination of Lactobacillus casei [146]. Moreover, attach-
ment and colonization of some LAB to the mucosal intesti-
nal epithelium and M cells lead to enhanced expression and 
transportation of the desired antigen into Peyer’s patches 
where the response initiates [144]. The efficacy of mucosal 
immunity could be improved by their colonization [147, 148]. 
Colonizing strains considerably stimulate the immune system 
through continuous expression of antigen and durable exist-
ence in host leading to prolonged presentation of antigens 
to the immune system. However, non-colonizing strains are 
similar to particles carrying and releasing the antigen [73]. 
Although colonizing or non-colonizing strains have their own 
advantages, it is unlikely to precisely state which is prefer-
able for vaccine. Immunogenicity is under the influence of 
optimal antigen presentation and is the most pivotal param-
eter of vaccine [73]. Thus, attachment to the mucosal mem-
brane seems to be superior to induce potent immune response 
[149] and those with colonizing capability are preferable for 
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recombinant LAB-based vaccines [73]. Furthermore, depend-
ing on the LAB strain, the interaction between LAB, APCs, 
and subsequent immune responses are thoroughly varied and 
strain-specific [150–152]. Furthermore, their survival rate in 
the ileum (location of Peyer’s patches) is different from each 
other. According to the results from the first European pro-
ject, Lactobacillus plantarum NCIMB 8826 and Lactobacil-
lus salivarius UCC 433118 are more durable than L. lactis 
MG1363 and Lactobacillus fermentum KLD [153]. Thus, 
the success of vaccine developed from one member of LAB 
as antigen carrier does not ensure the equivalent potency for 
the others [2]. Some strains play a vital role in homeostasis 
maintenance, reduction risk of allergic reactions, protection 
against pathogens, and stimulation of the mucosal epithelial 
cells to secrete mucus or other antimicrobial peptides (AMP) 
[154]. Among all LAB, the most frequently used bacteria for 
expression of the desired protein due to the wide range of 
genetic toolbox [155] and commercially available cloning/
expression systems [131] is Lactococcus lactis [11], and its 
superiority over Lactobacilli has been reported [156]. In this 
regard, L. lactis, i.e., MG1363, which is a plasmid-free strain 
without any extracellular protease with the compatible expres-
sion system, NICE, is considered as the most commonly used 
strain in research and development [156]. Additionally, Bifi-
dobacterium are anaerobic nonpathogenic bacteria existing 
in the human intestine. Their health-improving features such 
as ability to enhance the immune response, protection against 
viral infection [157], cost-effectiveness, non-invasive route 
of administration, absence of antibiotic resistance, and high 
safety levels have made it a favorable delivery vaccine vector 
[158]. Using this platform, vaccines for hepatitis C virus and 
enterovirus have been developed [159, 160]. A growing num-
ber of studies have reported numerous antigens expressed in 
engineered LAB as candidate vaccines such as urease, LcrV 
antigen, EP7 antigen, hemagglutinin (HA) from Helicobacter 
pylori, Yersinia pseudotuberculosis, human type 16 papillo-
mavirus, and avian influenza virus, respectively [161–163], 
and also against viruses such as HIV [164, 165].

LAB Vaccine Development for Respiratory Pathogens

Considering the fact that most viruses transmit through the 
mucosal barrier and develop systemic infection, an optimal 
vaccine should induce both systemic and mucosal immunity 
[142]. As previously mentioned, it is worth noting that adequate 
immune responses including antigen-specific IgG, mucosal IgA, 
and Th1/Th17 responses are induced by proper oral vaccines 
[44, 166, 167]. Thus, oral vaccines are rather appropriate for 
respiratory tract and intestinal mucosal infections [168]. Probi-
otics have antiviral potentials and protective efficiency particu-
larly against respiratory viral infections such as influenza virus, 
respiratory syncytial virus, dengue virus, rhinovirus, respiratory 
syncytial virus, adenovirus, and Ebola virus [9, 98, 169–178]. 

Hence, the severity of COVID-19-related symptoms could be 
equally reduced [171]. D’Ettorre et al. reported the consider-
able effect of oral administration of probiotics on outcomes of 
COVID-19 patients [175]. They further confirmed the previ-
ously mentioned relevance of gut-lung axis for the COVID-19 
management [179, 180]. These inherent characteristics could 
be applied in vaccine development. Furthermore, the adjuvan-
ticity of probiotics [109, 135, 181] could be applied in vaccine 
development of SARS-CoV2 [89]. Above all, the efficiency of 
nasal immunizations with some recombinant LAB particularly 
over respiratory pathogens such as tuberculosis, coronavirus, 
influenza, and respiratory syncytial virus has been reported 
[182–186]. In a study, subsequent to the oral administration of 
engineered Lactococcus lactis expressing avian influenza H5N1 
hemagglutinin, appropriate immune responses in mice have 
been reported [187]. Similarly in another study performed by 
Shi et al., administration of engineered L. plantarum express-
ing H9N2 hemagglutinin (HA) induced the production of fecal 
and bronchiolar IgA, serum IgG, elevated B cell levels in the 
secondary lymphoid organ, CD8 T cell proliferation, and IFN 
secretion [188]. Ho et al. for the first time developed a recombi-
nant Lactobacillus casei strain Shirota expressing corona viral 
TGEV S protein as live mucosal vaccines against coronavirus. 
After the oral immunization in mice, both mucosal and systemic 
humoral responses were induced and persisted in intestine for 
a week due to adhesion to the jejunum and ileum [142]. In 
this regard, COVID-19 is not an exception and similar to other 
respiratory and intestinal mucosa infections, an oral/mucosal 
vaccine is an urgent global need [168]. Moreover, according to 
the role of mucosa in SARS transmission and infection, work-
ing on mucosal immunization to induce systemic and mucosal 
immunity is favorable [183]. Recently, a genetically engineered 
Lactobacillus acidophilus expressing S protein of SARS-CoV2 
is being investigated [168]. Likewise as recombinant probiotic 
vaccine, Symvivo Corporation (Vancouver-based Biotech 
Company) lately introduced an oral vaccine candidate, engi-
neered Bifidobacteria longum expressing Spike protein, called 
bacTRL-Spike. Following its administration, both cellular and 
humoral immunity against Spike protein has been induced to 
prevent COVID-19 infection. Currently, it is under investiga-
tion in Phase I clinical trials (NCT04334980). The advantages 
of these two recombinant probiotic vaccines during our current 
pandemic situation include circumvention of injection by pro-
fessional administration, cost-effectiveness, convenient storage, 
and being bio-friendly [168, 189–191].

Conclusion

Currently, during the COVID-19 pandemic crisis, which is 
threatening the human health and equally global financial 
and social life, the feasibility and accuracy of diagnostic and 
therapeutic approaches or vaccine development are pivotal. 
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It has been long demonstrated that providing mucosal immu-
nity for prevention of viral respiratory infection is superior to 
other approaches. Among all mucosal vaccines, recombinant 
LAB are considered as one of the most appealing approaches. 
It is evident that dysbiosis makes people more susceptible 
to infectious diseases. Moreover, the potential of probiotics 
for modulation of gut microbiota in respiratory infections 
suggests their possible applications in treating or preventing 
COVID-19. Indeed, intrinsic immune regulatory properties of 
LAB in combination with in vivo production of appropriate 
antigen in the mucosal surface have been made as a promising 
vector for live oral vaccines. In the future, their prophylactic 
and therapeutic effects against SARS-CoV-2 infection need 
to be clinically examined. Despite all these advantages, there 
is a limitation that should be noted. Due to the risk of septice-
mia, application of probiotics as prophylactic agents should be 
thoroughly considered particularly in immune-compromised 
individuals. We believe that discussions provided here prompt 
others for further research to develop unparalleled probiotic-
based vaccine approaches to control COVID-19.
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